
scout-39

scout-39 ii

COLLABORATORS

TITLE :

scout-39

ACTION NAME DATE SIGNATURE

WRITTEN BY January 31, 2023

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

scout-39 iii

Contents

1 scout-39 1

1.1 scout-39.guide . 1

1.2 scout-39.guide/Introduction . 2

1.3 scout-39.guide/Copyright . 2

1.4 scout-39.guide/Disclaimer . 3

1.5 scout-39.guide/Giftware . 3

1.6 scout-39.guide/System Requirements . 3

1.7 scout-39.guide/MUI . 4

1.8 scout-39.guide/AmiTCP . 4

1.9 scout-39.guide/Installation . 4

1.10 scout-39.guide/Using Scout . 4

1.11 scout-39.guide/Assigns . 6

1.12 scout-39.guide/Devices . 7

1.13 scout-39.guide/Expansions . 8

1.14 scout-39.guide/Fonts . 9

1.15 scout-39.guide/InputHandlers . 10

1.16 scout-39.guide/Interrupts . 11

1.17 scout-39.guide/Libraries . 12

1.18 scout-39.guide/Locks . 14

1.19 scout-39.guide/Memory . 14

1.20 scout-39.guide/Mounted Devs . 15

1.21 scout-39.guide/Ports . 16

1.22 scout-39.guide/Resident Cmds . 17

1.23 scout-39.guide/Residents . 18

1.24 scout-39.guide/Resources . 19

1.25 scout-39.guide/Semaphores . 20

1.26 scout-39.guide/Tasks . 21

1.27 scout-39.guide/Vectors . 23

1.28 scout-39.guide/Windows . 24

1.29 scout-39.guide/Scout and AmiTCP . 25

scout-39 iv

1.30 scout-39.guide/Scout without MUI . 26

1.31 scout-39.guide/Options . 26

1.32 scout-39.guide/Commands . 28

1.33 scout-39.guide/Updates . 34

1.34 scout-39.guide/Credits . 35

1.35 scout-39.guide/Author Info . 35

1.36 scout-39.guide/Index . 35

scout-39 1 / 39

Chapter 1

scout-39

1.1 scout-39.guide

Scout 37.138
Release 2.6

User’s Manual
Copyright (C) 1994-96 Andreas Gelhausen

Introduction
What is Scout?

Copyright
What you should know for distributing

Disclaimer
NO WARRANTY

Giftware
Scout is giftware

System Requirements
What your system should have

Installation
Installing Scout

Using Scout
How to use Scout

Scout and AmiTCP
Scout as AmiTCP service

Scout without MUI
MUI is not necessary!

scout-39 2 / 39

Options
You can set some variables.

Commands
ARexx and shell commands

Updates
How to get updates

Credits
Thanks are going to...

Author Info
How to reach the author

Index
Contents index

1.2 scout-39.guide/Introduction

What is Scout?
==============

Scout is a tool that allows you to monitor your computer system. It
displays many different things -- like tasks, ports, assigns, expansion
boards, resident commands, interrupts, etc. -- and you can perform
some certain actions on them.

For example you can freeze tasks, close windows and screens, release
semaphores or remove locks, ports and interrupts.

Through AmiTCP it’s also possible to use Scout as an TCP/IP service.

Since version 2.0 of Scout you can use nearly all implemented
functions through shell parameters. Therefore it’s not necessary to
install MUI for using Scout, but you will need MUI, if you want to use
Scout with its graphical user interface.

1.3 scout-39.guide/Copyright

Copyright
=========

Scout 37.138 (Release 2.6) - Copyright (C) 1994-96 by Andreas
Gelhausen, all rights reserved.

Scout is a giftware program and you are only allowed to freely

scout-39 3 / 39

distribute it, if you let this archive unchanged. No part of this
archive is allowed to be distributed with commercial software without a
written permission of the author.

1.4 scout-39.guide/Disclaimer

Disclaimer
==========

No warranties are made for this program. All use is at your own risk.
No liability or responsibility is assumed for any damages occured
during the usage of Scout. You have been warned.

1.5 scout-39.guide/Giftware

Giftware
========

Scout 37.138 is giftware. If you like and use this program, you are
welcome to appreciate my programming efforts by sending me a little
present -- thanks a lot in advance! =:^)

1.6 scout-39.guide/System Requirements

System Requirements
===================

Scout only requires Amiga operating system version 2.04.

If you want to use Scout’s graphical user interface, you also have
to install MUI version 2.1 or higher. See also

MUI and where you can get it
.

The TCP/IP features of Scout are only available, if you have
installed the version 4.0 of AmiTCP. See also

AmiTCP and where you can get it
.

scout-39 4 / 39

1.7 scout-39.guide/MUI

MUI - MagicUserInterface
========================

(C) Copyright 1992-96 by Stefan Stuntz

MUI is a system to generate and maintain graphical user interfaces.
With the aid of a preferences program, the user of an application has
the ability to customize the outfit according to his personal taste.

MUI is distributed as shareware. To obtain a complete package
containing lots of examples and more information about registration
please look for a file called muiXXusr.lha (XX means the latest version
number) on your local bulletin boards or on public domain disks.

If you want to register directly, feel free to send DM 30.- or US$
20.- to

Stefan Stuntz
Eduard-Spranger-Straße 7

80935 München
GERMANY

1.8 scout-39.guide/AmiTCP

AmiTCP
======

AmiTCP is a TCP/IP protocol stack for the Amiga. The demo version
4.0 (or higher) should be available in greater public domain
collections or on the AmiNet. Ask your preferred Amiga dealer. =:^)

1.9 scout-39.guide/Installation

Installing Scout
================

You only have to copy the program scout and the data file scout.data
to your favourite directory and then you can start it. The file
scout.data includes data of expansion boards.

1.10 scout-39.guide/Using Scout

How to use Scout

scout-39 5 / 39

This chapter describes the usage of Scout through its graphical user
interface. This graphical user interface is based on the Magic User
Interface (MUI) and MUI have to be installed in your system, if you
want to use Scout trough windows and so on.

If you don’t like MUI, you should see
Scout without MUI
.

If you start the program, you will get following window:

·--·
|

Libraries

Devices

Resources
|

|
Tasks

Ports

Resident Cmds
|

|
Expansions

Memory

Residents
|

|
Assigns

Locks

Mounted Devs
|

|
InputHandlers

Interrupts

Vectors
|

|
Fonts

Semaphores

Windows
|

·--·

scout-39 6 / 39

Every gadget you see represents a certain kind of system structures.

Click one of these gadgets and another window will be opened with a
list of the structure type that is indicated on the pressed gadget.

Example: Press the task gadget and you will get a window with the
list of tasks and processes.

You can also select these functions by pressing the underlined key
you see on each gadget or by using the right mousebutton menu.

If you wish to handle/remove a given structure, you should know what
you do.

Warning: Wrong handling of the showed structures can crash your
system. At the worst you will lose your data.

Please note: You should not be surprised, if you don’t find a certain
detail information in this manual, because it’s to much work to explain
each element of all the structures you could see in this program.

Many books are written about these things and if you want to have
more information about them, you should have a look in the specialized
literature.

1.11 scout-39.guide/Assigns

Assigns
=======

This type of structure assigns a logical name to a directory.

If you assign the directory dh0:data/documents the logical name
texts:, you will also be able to choose a file filename in that
directory with the path ‘texts:filename’.

Column items

Address
Address of the assign structure.

Name
Logical name of a directory

Path
Here you will find the path of the directory.

Actions

Update
Selecting this gadget updates the list of assigns.

scout-39 7 / 39

Print
This function allows you to send the list of Assigns to printer or
a selected file.

Remove
The selected assign will be removed with this function.

Exit
The Assigns window will be closed.

1.12 scout-39.guide/Devices

Devices
=======

A device is -- like a library (see
Libraries
) -- a collection of

functions/procedures, which have to do certain jobs.

E.g. the trackdisk.device includes functions for the floppy disk
handling.

Column items

Address
Address of the device structure

ln_Name
Name of a device

ln_Pri
Priority of a device

OpenC
This element shows how often the device was opened.

RPC
RPC means RAM Pointer Count and shows how many jump addresses of
the device point into RAM. In this way many programs -- like the
setpatch command from Commodore -- patch the system.

Many viruses patch the system in this way too, but don’t panic now.
If you check your system in regular intervals with a current virus
killer, it should be out of danger.

If the whole program code of the device is located in RAM, you will
find a dash (minus sign) here, because in this case it’s
unimportant how many jump addresses point into RAM.

ln_Type
Type of this structure (usually device)

scout-39 8 / 39

Actions

Update
If you select this gadget, the list of devices will be updated.

Print
This function allows you to send the list of Devices to printer or
a selected file.

Remove
The selected device will be removed with this function provided
that no program uses this device anymore and the OpenC is zero.

Priority
Herewith the priority of the device can be changed. A little
window will be opened, that asks you for a new priority. Through
the new priority it can happen that the device gets a new place in
the device list.

More
Another window will be opened and you will see more informations
about the selected device.

You will have the same effect, if you doubleclick an element of the
device list.

Exit
The Devices window will be closed.

1.13 scout-39.guide/Expansions

Expansions
==========

This window includes informations about the used processors and
custom chips and a list of all your expansion boards (graphic boards,
memory expansions and so on) too.

Column items

BoardAddr
Usually you will find the ROM of the card here. If this address
points into RAM, the card is a memory expansion.

BoardSize
If the entry belongs to a memory expansion, the size of the memory
is displayed here. Otherwise it’s the ROM size of the card.

Manufacturer
ManufacturerID, assigned by Commodore

scout-39 9 / 39

Product
Productnumber, assigned by the manufacturer of the board

Serial#
Serialnumber of the card (usually unused)

Actions

Print
This function allows you to send the list of Expansions to printer
or a selected file.

More
Now a window will be opened, that includes more informations about
the selected expansion board.

Doubleclick an element of the Expansions list and you will have
the same effect.

Exit
The Expansions window will be closed.

Unknown expansion boards

If you select an expansion board by selecting its list item, you will
get the name of the manufacturer and the card in the textfield you find
below the list, provided that I have known these data at compiling.

If no information is available in this textfield or the given
information is wrong, you should send me the following data, please.

1. ManufacturerID (Manufacturer)
2. ProductID (Product)
3. Name of the company
4. Name of your expansion card

If you send me these data, the next version of file scout.data will
include your expansion boards. Please be as precise you can.

1.14 scout-39.guide/Fonts

Fonts
=====

This function will show you all fonts existing in your system.

Column items

YSize
Vertical size of the font

scout-39 10 / 39

Count
Here you can see how many programs use the font.

Type
ROMFONT means the font is located in ROM and DISKFONT means the
font was loaded from disk/harddisk.

Name
Name of the font

Actions

Update
The list of fonts will be updated.

Print
This function allows you to send the list of Fonts to printer or a
selected file.

Close
The font will be closed by using this function.

Remove
It is possible to remove a font from system, provided that no
program uses it and it’s no ROMFONT.

Exit
The Fonts window disappears.

1.15 scout-39.guide/InputHandlers

InputHandlers
=============

Input handlers take care of all user input arriving in system
(pressed keys, mouseclicks, inserted disks, etc.). They stand one
behind the other like on a production line and analyze the user input.
The input handler with the highest priority gets the ‘events’ first and
if it doesn’t know how to react on these ‘events’, the second input
handler gets them, and so on.

Usually the system input handler has a priority of 50. Every input
handler, that wants to get the user input before the system, must have
a higher priority.

Column items

ln_Name
Name of the input handler

ln_Pri

scout-39 11 / 39

Its priority

is_Data
This address points to some data needed by the input handler.

is_Code
The program code starts here. If the code is located in RAM, the
address is of different color. Otherwise you can find the code in
ROM. Some viruses install an input handler in system. In this
case the is_Code address points into RAM, but many other programs
uses input handlers, too. Don’t panic!

Actions

Update
The list of input handlers will be updated when you select this
gadget.

Print
This function allows you to send the list of InputHandlers to
printer or a selected file.

Remove
Removes an input handler from system.

Priority
Changes the priority of an input handler.

Exit
The window will be closed.

1.16 scout-39.guide/Interrupts

Interrupts
==========

Interrupts are important events the computer system has to react on.
It exists a list of interrupt routines for each interrupt type. If a
certain interrupt occurs, all these interrupt routines will be called.
During their execution the running program will be interrupted.

Column items

ln_Name
Name of the interrupt

ln_Pri
Its priority

is_Data
At this address you find the data of the interrupt.

scout-39 12 / 39

is_Code
Address of the interrupt code. If this address points into RAM,
it’s of a different color.

NUM
This number represents the type of event the interrupt routine is
called on. The IntName you find in the interrupt detail window
gives you a little bit more information about it.

Example: Number 5 means that the interrupt is called at every
vertical blank interval.

Actions

Update
The list of interrupts will be updated.

Print
This function allows you to send the list of Interrupts to printer
or a selected file.

Remove
If the interrupt is a server you can remove it from system. An
interrupt handler can’t be removed by Scout.

If you call avail flush and the audio.device isn’t used, the
interrupt handlers of the audio.device will be removed.

More
Now a window will be opened that includes more details of the
interrupt.

Exit
Selecting this gadget will close the Interrupts window.

1.17 scout-39.guide/Libraries

Libraries
=========

A library is a collection of functions/procedures, which have to do
certain jobs. E.g. the ‘graphics.library’ includes routines for
graphical display.

Column items

Address
Adress of the library structure

ln_Name
Name of a library

scout-39 13 / 39

ln_Pri
Priority of a library

OpenC
Here you see, how often the library was opened.

RPC
RPC means RAM Pointer Count and shows how many jump addresses of
the library point into RAM. In this way many programs -- like the
setpatch command from Commodore -- patch the system.

Many viruses patch the system in this way too, but don’t panic now.
If you check your system in regular intervals with a current virus
killer, it should be out of danger.

If the whole program code of the library is located in RAM, you
will find a dash (minus sign) here, because in this case it’s
unimportant how many jump addresses point into RAM.

ln_Type
Type of this structure (usually library)

Actions

Update
The list of libraries will be updated.

Print
This function allows you to send the list of Libraries to printer
or a selected file.

Remove
The selected library will be removed with this function provided
that no program uses this library anymore and the OpenC is zero.

Some libraries can’t be removed from system without a reset. So
you shouldn’t wonder about it, if this happens.

Close
A library must be closed by all programs, if you want to remove it
from system. In this case the OpenC is zero.

If you select this function, you will be asked, how often you want
to close it. You can choose between Once and All.

Select All and the library will so often be closed till the OpenC
is zero.

Priority
Herewith the priority of the library can be changed. A little
window will be opened, that asks you for a new priority. Through
the new priority it can happen that the library gets a new place
in the list of libraries.

More
A window will be opened that includes more details of the library.

scout-39 14 / 39

Exit
Selecting this gadget will close the library window.

1.18 scout-39.guide/Locks

Locks
=====

A lock structure shows you, that a program reads from or perhaps
write into a file or a directory. With this type of structure the
system prevents, that a file will be deleted while another program gets
some data from it.

Column items

Access
Here you can see the type of access. This could be READ, WRITE or
OWN. OWN stands for a lock Scout created to get the elements of
this list.

Path
Path of the file or directory

Actions

Update
The list of Locks will be updated.

Print
This function allows you to send the list of Locks to printer or a
selected file.

Remove
A lock will be removed through dos.library’s ‘UnLock()’ function.

Pattern
If you give Scout a pattern, only the locks with a matching path
will be shown.

Exit
The Locks window will be closed.

1.19 scout-39.guide/Memory

Memory
======

scout-39 15 / 39

In this list you will find the segments of your memory. At least you
will find an entry for your chip memory.

Column items

ln_Name
Name of the memory segment (e.g. chip memory)

ln_Pri
Priority of memory

mh_Lower
First address of memory

mh_Upper
Last address of memory

Actions

Print
This function allows you to send the list of the memory segments to
printer or a selected file.

Priority
This function allows you to change the priority of a memory
segment. The memory segment with the highest priority will be
preferred from system, provided that no certain type of memory is
demanded.

More
Another window will be opened. This window includes more
information about the memory segment.

Exit
The window will be closed.

1.20 scout-39.guide/Mounted Devs

Mounted Devices
===============

In this list you will find all your devices like disk drives, printer
devices, etc.

Column items

Name
Name of the device

Unit
Unit number

scout-39 16 / 39

Heads
Number of heads

Cyl
Number of cylinders

State
The state shows you for example, if a disk is in drive.

DiskType
Type of a disk (e.g. OFS (OldFileSystem), FFS (FastFileSystem),
...)

Handler or Device
The handler or the device you find here has to manage the stream of
data from and to the device.

Actions

Update
The list will be updated.

Print
This function allows you to send the list of Mounted Devs to
printer or a selected file.

Exit
The window will be closed.

1.21 scout-39.guide/Ports

Ports
=====

Programs are able to communicate together through ports.

Column items

Address
Here you will find the port structure.

ln_Name
Name of port

ln_Pri
Priority of port

mp_SigTask
The task is communicating through the port.

Actions

scout-39 17 / 39

Update
The ports list will be updated.

Print
This function allows you to send the list of Ports to printer or a
selected file.

Remove
The port will be removed.

Priority
Herewith the port priority can be changed.

Exit
The Ports window will be closed.

1.22 scout-39.guide/Resident Cmds

Resident Commands
=================

This list includes all resident commands. That means all commands you
find in ROM and the commands you made ‘resident’ through the resident
command.

Positions and sizes of their hunks you will find here, too.

Column items

Name
Name of the command

UseCount
Here you can see, how often a command was being executed at the
time the list was build.

Lower
First address of hunk in memory

Upper
Last address of hunk in memory

Size
Size of hunk (upper - lower - 8 bytes overhead)

Actions

Update
The list of Resident Commands will be updated.

scout-39 18 / 39

Print
This function allows you to send the list of Resident Commands to
printer or a selected file.

Remove
The selected command will be removed with this function provided
that no program uses this command anymore and the UseCount is zero.

Exit
The window disappears.

1.23 scout-39.guide/Residents

Residents
=========

Resident modules are reset-protected segments (code and data). In
the list of Residents you usually find libraries, devices and
resources. A programmer has the possibility to make his own programs
reset-protected. He has to initialize a resident structure for it and
then he can link the program through the kick-vectors (see

Vectors
) to

the list of the resident modules. The residents you linked to system
are usually located in RAM and are of a different color.

If you find a resident module that points into RAM and you don’t know
which program has created it, you should start your favourite virus
detector and let it check your memory. Many viruses prefer this way to
travel around.

Column items

Address
At this address the resident module is located.

ln_Name
Name of the resident module

rt_Pri
Priority

rt_IdString
Identity string of the resident module.

Actions

Update
The list of Residents will be updated.

Print
This function allows you to send the list of Residents to printer

scout-39 19 / 39

or a selected file.

More
Selecting this gadget opens a new window with more information
about the selected resident module.

Exit
The Residents window will be closed.

1.24 scout-39.guide/Resources

Resources
=========

Usually a resource is -- like a library (see
Libraries
) -- a

collection of functions/procedures, which have to do certain jobs.

E.g. the ‘filesystem.resource’ includes functions for the filesystem
handling.

Column items

Address
Address of the resource structure

ln_Name
Name of a resource

ln_Pri
Priority of a resource

OpenC
This element shows how often the resource was opened.

RPC
RPC means RAM Pointer Count and shows how many jump addresses of
the resource point into RAM. In this way many programs -- like
the setpatch command from Commodore -- patch the system.

Many viruses patch the system in this way too, but don’t panic now.
If you check your system in regular intervals with a current virus
killer, it should be out of danger.

If the whole program code of the resource is located in RAM, you
will find a dash (minus sign) here, because in this case it’s
unimportant how many jump addresses point into RAM.

ln_Type
Type of this structure (usually resource)

scout-39 20 / 39

Actions

Update
The list of Resources will be updated.

Print
This function allows you to send the list of Resources to printer
or a selected file.

Remove
The selected resource will be removed with this function, provided
that no program uses it anymore and the OpenC is zero.

Priority
Herewith the priority of the resource can be changed. A small
window will be opened, that asks you for a new priority. Through
the new priority it can happen that the resource gets a new
position in the list of resources.

More
Select this gadget and you get a new window with more information
about the selected resource.

Exit
The Resources window will be closed.

Please note: If you should find three dashes (minus signs) at OpenC
and/or RPC, the resource has no typical library structure. This
happens for example at the ‘FileSystem.resource’.

1.25 scout-39.guide/Semaphores

Semaphores
==========

The use of semaphores is a way of single-threading critical
sections. For example only one program is allowed to use the printer
at one time, otherwise the texts would be mixed.

Column items

ln_Name
Name of a semaphore

Nest
This item counts how often the semaphore has been obtained by the
owner task.

Queue
This counter shows you, how many programs want to obtain the
semaphore.

scout-39 21 / 39

Owner
Here you will find the name of the task that owns the semaphore.

Actions

Update
The list of Semaphores will be updated.

Print
This function allows you to send the list of Semaphores to printer
or a selected file.

Obtain
This function is used to gain access to a semaphore. The NestCnt
will be increased at one by this call.

Release
Herewith you can make a signal semaphore available to others.

Exit
The Semaphores window will be closed.

1.26 scout-39.guide/Tasks

Tasks
=====

In this window you find a list of all tasks and processes being in
system. Each program you start will be executed as a task or process.

Column items

ln_Name
Name of the task/process

ln_Type
Type of the structure (task or process)

ln_Pri
Priority of the task/process

NUM
If a non detaching program was started from shell, you will find
here the number of the process. Programs you started from
Workbench have a dash here.

State
Here you see the state of the task or process. You will find
Scout’s own process on the top of the list with a run at this
place, because this process is always running when it gets the
task list.

scout-39 22 / 39

ready means the task wants to work, but it’s interrupted by the
execution of another task.

A task that is waiting for a certain signal is in the state wait.
In this case it doesn’t need processing time.

SigWait
Signalmask the task is waiting for.

Actions

Print
This function allows you to send the list of Tasks to printer or a
selected file.

Freeze
With this function you freeze the selected task. It can still be
found in the list of tasks, but it gets no processing time from
system.

Warning: If you try to freeze tasks essential to the system
like ‘input.device’, you should have saved all important
data, cause a RESET is the only way out!

Activate
A frozen task can be activated here.

CPU
Here you will find a text field and a cycle gadget. This text field
displays -- dependent on the state of the cycle gadget -- the CPU
load in percent.

For the cycle gadget you can choose between three states:
off

In this case the CPU load won’t be displayed. If you select
another state, Scout will patch some system functions to
calculate the CPU load of all tasks.

full
If you select this state, Scout sets the real cpu load to
100%. That means the total of the CPU loads of all tasks and
processes will be 100%. Therefore nothing will be displayed
in the text field.

in %
Scout starts a task named « Scout’s cheat task » to
calculate the real CPU load and it will be displayed in the
text field.

Secs
This string gadget allows you to set the intervall time for
updating of the CPU load display.

Update
The list will be updated.

scout-39 23 / 39

Remove
A task will be removed from the list. You should prefer the freeze
function, if you perhaps need this task again.

See also Break!

Signal
If you select a signal mask, it will be send to the task.

Break
A signal mask that includes the signals CTRL-C and CTRL-D will be
send to the task you selected. Many tasks and processes end, if
they receive these signals.

Priority
The priority of a task can be changed with this function.

More
Selecting this gadget will open another window that displays more
informations about the task or the process.

Exit
The window will be closed.

1.27 scout-39.guide/Vectors

Vectors
=======

Actions

Update
The displayed vectors will be updated.

Print
This function allows you to send the list of Vectors to printer or
a selected file.

Exit
The window will be closed.

Reset Vectors

A program can make itself reset-protected by using the reset vectors.
If the vectors are unused, they have a value of zero. The programs
which use the Kick-Vectors (KickTagPtr, KickMemPtr and KickCheckSum)
can also be found in the list of resident structures. See also

Residents
.

scout-39 24 / 39

Auto Vector Interrupts

In a computer system with a MC68000 processor you will find the seven
Auto Vector Interrupts from address $64 to address $7c. Higher
processors (MC68010, etc.) have the VBR (Vector Base Register) that
allows you to move the interrupt table to FAST-MEM. The system will be
a little bit faster then. Scout uses the VBR if it exists.

Interrupt Vectors

Here you see 16 interrupt vectors (IntVecs). These vectors are
located in the ‘ExecBase’ (base structure of the exec.library).

1.28 scout-39.guide/Windows

Windows
=======

All screens with the windows opened on them are listed here. Screens
are of a different color as windows.

Column items

Pos(x,y)
x and y position of the screen/window

Size(x,y)
x and y size of the screen/window

Title
Title of the screen/window

Actions

Update
The list will be updated.

Print
This function allows you to send the list of Windows to printer or
a selected file.

Close
With this function it is possible to close screens and/or windows.
If you close a screen, all windows on it will be closed too.

To Front
The selected screen/window will be popped to front.

More

scout-39 25 / 39

If you select this gadget another window will be opened that
displays more informations about the window or the screen.

Exit
The window will be closed.

1.29 scout-39.guide/Scout and AmiTCP

Scout and AmiTCP
================

This section will show you what you have to do for using Scout as a
TCP/IP service through AmiTCP. Nearly all functions of Scout can also
be used via AmiTCP.

Now some knowledge will be assumed. If you don’t know, what kind of
program AmiTCP represents, you should read AmiTCP’s user’s manual
before. (See also

AmiTCP
.)

If you have installed AmiTCP, you can use Scout as client and
server. Except the installed programs of AmiTCP you don’t need another
program for using Scout on networks.

If you want to make your computer available for other systems on the
network, you have to do following two steps:

1. Add the line scout 6543/tcp to file AmiTCP:db/services.

2. Now please add the line scout stream tcp nowait root dh0:scout to
file AmiTCP:db/inetd.conf. Make sure that the path at the end of
this line is the right path for scout.

That’s it! If you start AmiTCP now, your computer is available for
other systems through using the options HOST, USER and PASSWORD.

Example: If I want perform some actions on some system structures
of my own system for example, I have to start Scout through
something like:

1> scout HOST crash.north.de USER atte PASSWORD secret

If you leave out option PASSWORD, you will be asked for the correct
password through the password: prompt. In this case nobody can see your
password, because it won’t be displayed in shell.

If you don’t use option USER, AmiTCP takes the username that is
actually available in system.

The usage of AmiTCP doesn’t provide the installation of MUI. All of
Scout’s shell commands (see also

Commands
) can be used via network

scout-39 26 / 39

through AmiTCP.

Example: If I want to get the task list of my system, I have to
use something like:

1> scout HOST crash.north.de USER atte PASSWORD secret Tasks

You and all other users must always identify themselves through
their usernames (option USER) and their passwords (option PASSWORD).
It’s also possible to allow or deny certain systems the usage of some
services through the file AmiTCP:db/inet.access. See also the user’s
manual of AmiTCP.

If you want to get more informations about the implemented options
and commands, you should also see

Options
and

Commands
.

1.30 scout-39.guide/Scout without MUI

Scout without MUI
=================

Nearly all through the graphical user interface available functions
of Scout are also available via shell. Therefore you don’t really need
MUI for using Scout. But if you want to use Scout’s graphical user
interface, you must have MUI in your system.

1.31 scout-39.guide/Options

Options

There are some options for Scout which you can use, when you start
the program. The following options are available from shell and as
tool types from Workbench.

ICONIFIED
Usage: ICONIFIED

If this option is activ, Scout starts iconified.

PORTNAME
Usage: PORTNAME=portname

The name of Scout’s ARexx port can be changed into portname.
Without this option the ARexx port is called ‘SCOUT.X’. The X

scout-39 27 / 39

stands for a decimal number that will be incremented, if a so
called port already exists.

TOOLPRI
Usage: TOOLPRI=value

This option allows you to change the priority of Scout’s process
into value.

STARTUP
Usage: STARTUP=command

The variable command should be an ARexx script or a single ARexx
command. Both (script or command) will be executed, when Scout
will be started. In this way you can open more than only the main
window by starting. Try for example the command OpenWindow Tasks
and you will get two windows by starting (the main window and the
task list window).

(See also
ARexx port
.)

INTERVALTIME
Usage: INTERVALTIME=seconds

This options allows you to save your preferred update time for the
list of tasks. (See also

Secs
.)

CPUDISPLAY
Format: CPUDISPLAY=value

Through the variable value you can select the state of the CPU
cycle gadget you find in the Tasks window. (See also

CPU
.)

* 1 means CPU: full

* 2 means CPU: in %

HOST
Format: HOST=hostname

This options allows you to specify the system (hostname) you want
to manipulate via network through AmiTCP.

USER
Format: USER=username

You have to use this option to identify yourself by using Scout as
a TCP/IP service.

PASSWORD
Format: PASSWORD=password

scout-39 28 / 39

Without a password Scout can’t connect to another system via
network. This option allows you to set the correct password.

COMMAND
Format: COMMAND=commandline

Nearly all of Scout’s implemented functions are available from
shell through this option. You don’t need the COMMAND key to use
this option. (See also

Commands
.)

SINGLEWINDOWS
Format: SINGLEWINDOWS

Some users don’t like to handle the many windows of Scout. This
option solves the problem of too many windows. If this option is
selected, only one list window and only one detail window is
opened at a time.

SORT#?TYPE
Format: SORT#?TYPE=number

Many of Scout’s lists have a cycle gadget below themselves. With
these gadgets you can select, how a certain list will be sorted.

SORT#?TYPE stands for each of the following options:
SORTLIBRARIESTYPE, SORTDEVICESTYPE,
SORTRESOURCESTYPE, SORTTASKSTYPE, SORTPORTSTYPE,
SORTCOMMANDSTYPE, SORTASSIGNSTYPE and SORTLOCKSTYPE.

SORT#?TYPE should follow a decimal number, which selects the kind
of sorting.

Here are some examples for the list of tasks:

SORTTASKSTYPE=1 the tasks will be sorted by their names.
SORTTASKSTYPE=2 the tasks will be sorted by their priorities.

1.32 scout-39.guide/Commands

Scout’s commands via ARexx and shell

Scout supports two kinds of commands:

1. commands only available from shell

2. commands available from ARexx and shell

ARexx port

scout-39 29 / 39

It’s a feature of MUI to give each application its own ARexx port.
Therefore Scout also has an ARexx port that usually has the name
SCOUT.X. The X stands for a decimal number that will be
incremented, if a so called port already exists.

You will find the name of Scout’s ARexx port in the window you get,
if you select the Project/About menu.

Using tasknames:

If a task or a process was started from shell and hasn’t detached
itself, you will find the name of the command being executed, where
usually the taskname is displayed. The real name of those tasks
usually is something like Background CLI, but such a taskname isn’t
useful.

Example: If you start a non detaching task like DH0:Debug/Sushi
from shell, you will see DH0:Debug/Sushi as taskname.

Some ARexx commands need a taskname as parameter. You have to select
those from CLI started self detaching tasks by using their command
names like Scout displays them in the lists of tasks.

Commands only available from shell
==================================

Help
Format: Help

This command is the most important one and it doesn’t need
parameters. If you try Help, Scout prints a list of all available
commands to shell. =:^)

Now 18 commands follow. These commands allow the user to get all
lists of system structures from shell. Therefore you only need to
install MUI for using Scout’s graphical user interface.

Each of the following commands has a shortened form that stands
behind the command in parentheses.

Assigns (a), Commands (c), Devices (d), Expansions (e), Fonts (f),
InputHandlers (h), Interrupts (i), Libraries (l), Memory (m),
Mounts (n), Locks (o), Ports (p), Residents (r), Semaphores (s),
Tasks (t), Resources (u), Vectors (v) und Windows (w)

Example: To get the list of ports, you only have to use scout
ports or scout p from shell.

Commands available from ARexx and shell
=======================================

FindTask
Usage: FindTask task

This command allows you to check, if task task exists in system or

scout-39 30 / 39

not. The result is the address of the task task, if it has been
found. task can be the name or the address of a task.

FreezeTask
Usage: FreezeTask task

The task taskname will be frozen. After that it will still be
found in system’s task list, but then it doesn’t need processing
time. You can choose the name or the address of a task for task.

ActivateTask
Usage: ActivateTask task

If task task was frozen, it will be activated, otherwise an error
occured. task is again a task’s name or an address.

RemoveTask
Usage: RemoveTask task

This command removes the task task. It’s lost forever.

BreakTask
Usage: BreakTask task

Scout sends the task task a certain signal mask that includes the
signals CTRL-C and CTRL-D. Many programs support these signals and
finish themselves, if they receive one of them.

SignalTask
Usage: SignalTask task hexsignal

This command allows you to send a signal hexsignal to the task
task. The signal must specified as a hexadecimal number.

Example:
SendSignal ’scout’ 0x001000

sends task scout a CTRL-C and after that Scout ends.

SetTaskPri
Usage: SetTaskPri task priority

The task task gets a new priority (priority).

RemovePort
Usage: RemovePort port

The port port will be removed from Scout. port can be the name of
a port or its address.

GetLockNumber
Usage: GetLockNumber lockpattern

This command returns the number of locks which have paths matching
to the pattern lockpattern.

Example: Use the command
GetLockNumber ’WORK:Utilities/#?’

scout-39 31 / 39

and you will know, how many locks are currently used for files in
the directory WORK:Utilities/.

RemoveLocks
Usage: RemoveLocks lockpattern

Use this command and all locks which have paths matching to the
pattern lockpattern will be removed. (See also GetLockNumber.)

RemoveLock
Format: RemoveLock lockaddress

The lock at adress lockaddress will be removed.

FindNode
Usage: FindNode nodetype nodename

This command allows you to find a certain node. You only have to
know its name (nodename) and its type (nodetype).

Nodetype can have following values: LIBRARY, DEVICE, RESOURCE,
MEMORY, SEMAPHORE, PORT or INPUTHANDLER.

Example: If you want to get the address of the disk.resource you
must use:

FindNode RESOURCE ’disk.resource’

GetPriority
Usage: GetPriority nodeaddress

This command allows you to check the priority of a certain node
structure. This includes all following structure types: tasks,
libraries, devices, resources, ports, residents, input handlers,
interrupts, semaphores and the elements of the memory list.

You only have to know the address (nodeaddress) of that structure.

Example: The following ARexx commands store the priority of your
chip memory in the variable pri:

FindName MEMORY ’chip memory’
addr = result
GetPriority addr
pri = result

SetPriority
Usage: SetPriority nodetype nodename

If you want to change the priority of the node nodename, you can
use this command. Again nodetype can have following values:
LIBRARY, DEVICE, RESOURCE, MEMORY, SEMAPHORE, PORT or INPUTHANDLER.

CloseLibrary
Format: CloseLibrary library

The library library will be closed once. library can be the name
of the library or its address.

scout-39 32 / 39

RemoveLibrary
Format: RemoveLibrary library

The library library will be removed, if no program uses it.

RemoveDevice
Format: RemoveDevice device

The selected device device will be removed. For device use the
name or the address of the device.

RemoveResource
Format: RemoveResource resource

The resource resource will be removed.

ObtainSemaphore
Format: ObtainSemaphore semaphore

This command allows you to obtain the given semaphore. semaphore
can be the semaphore’s name or address.

ReleaseSemaphore
Format: ReleaseSemaphore semaphore

The semaphore semaphore will be once released.

RemoveSemaphore
Format: RemoveSemaphore semaphore

You are able to remove the semaphore semaphore by using this
command.

RemoveInputhandler
Format: RemoveInputhandler inputhandler

The input handler inputhandler selected through name or address
will be removed.

FindResident
Usage: FindResident resident

This command returns the address of the resident structure
resident.

FindInterrupt
Usage: FindInterrupt interruptname

The address of the interrupt interruptname will be returned.

RemoveInterrupt
Format: RemoveInterrupt interruptname

The interrupt you have selected through interruptname will be
removed.

FlushDevs

scout-39 33 / 39

Usage: FlushDevs

All not used devices will be removed. The used memory will be
freed.

FlushFonts
Usage: FlushFonts

If a diskfont is in memory, but no program uses it, it will be
removed.

FlushLibs
Usage: FlushLibs

All not used libraries will be removed. The used memory will be
freed.

FlushAll
Usage: FlushAll

This function includes FlushDevs, FlushFonts and FlushLibs. All
not used devices, libraries and fonts will be removed and the used
memory will be freed.

ClearResetVectors
Usage: ClearResetVectors

The six reset vectors will be cleared, if you select this function
(see

Vectors
).

PopToFront
Usage: PopToFront title

This command allows you to pop a screen or window to front. You
only have to know its (title).

CloseWindow
Usage: CloseWindow windowtitle

This command closes the window that is specified through its title
(windowtitle).

CloseScreen
Usage: CloseScreen screentitle

If you select this command, the screen (screentitle) will be
closed with all its windows.

CloseFont
Format: CloseFont address

The font at address address will be closed once.

RemoveFont
Format: RemoveFont address

scout-39 34 / 39

This command removes the font at address address, if it’s not used
by any program.

RemoveCommand
Format: RemoveCommand address

Scout makes the resident command at address address not resident.

RemoveAssign
Format: RemoveAssign name

With this command you’re able to remove the assign name.

RemoveAssignList
Format: RemoveAssignList name address

This command removes the directory at address address from assign
name. You will find the address of that directory in the list of
assigns.

PrintList
Format: PrintList listcharacter filename

This command allows you to print a list (specified by the
listcharacter) into the file filename.

Example:
PrintList t ’ram:tasklist’

will print the list of tasks into the file ’ram:tasklist’.

OpenWindow
Usage: OpenWindow windowid

All windows you get if you select a gadget of Scout’s main window,
can be opened with this command. The windowid is the same text you
find on the main window gadgets.

Example:
OpenWindow ’Mounted Devs’

will open the window with the list of mounted devices.

1.33 scout-39.guide/Updates

How to get updates
==================

The newest version of Scout should always be available on AmiNet or
Public Domain collections, which are up-to-date.

scout-39 35 / 39

1.34 scout-39.guide/Credits

Credits
=======

Now I have to thank some people for supporting the development of
Scout on many different kinds:

* Klaus ‘gizmo’ Weber, he was always available to me and my many
questions (not a few) during the programming of Scout.

* Christian ‘cosinus’ Stelter, he gave me the permission to use his
many manuals.

* Stefan Stuntz for his great MagicUserInterface

* all bug reporting and feature requesting people: Kai ‘wusel’
Siering, Martin Hauner, Peter Meyer, Karl ‘Charly’ Skibinski,
Michael ‘Mick’ Hohmann, Thore Böckelmann, Bernardo Innocenti, ...

and last but not least

* all the others I’ve forgotten for reporting bugs, sending
expansion boards data and so on.

1.35 scout-39.guide/Author Info

How to reach the author
=======================

If you have questions, suggestions, bug reports or anything else, you
can send electronic mails to:

atte@crash.north.de
or

Andreas.Gelhausen@Informatik.Uni-Oldenburg.de

If it is not possible for you to use this way, you can send letters
to:

Andreas Gelhausen
Graf Spee Str. 23b
26123 Oldenburg

- Germany -

That’s it! =:^)

1.36 scout-39.guide/Index

scout-39 36 / 39

Index

AmiTCP
AmiTCP

ARexx
Commands

ARexx port
Commands

Assigns
Assigns

Author Info
Author Info

Boards
Expansions

Command
Commands

Command Line Options
Options

Copyright
Copyright

Credits
Credits

Device names, logical
Assigns

Devices
Devices

Disclaimer
Disclaimer

DISKFONT
Fonts

Expansions
Expansions

Fonts
Fonts

Giftware
Giftware

Hardware

scout-39 37 / 39

Expansions

Input events
InputHandlers

InputHandlers
InputHandlers

Installation
Installation

Interrupts
Interrupts

Introduction
Introduction

Legalities
Copyright

Libraries
Libraries

Locks
Locks

Logical device names
Assigns

MagicUserInterface
MUI

Main Window
Using Scout

Manufacturer
Expansions

Memory
Memory

Mounted Devices
Mounted Devs

MUI
MUI

No Warranty
Disclaimer

Options
Options

Ports
Ports

Processes

scout-39 38 / 39

Tasks

RAM Pointer Count
Devices

Resident Commands
Resident Cmds

Residents
Residents

Resources
Resources

ROMFONT
Fonts

RPC
Devices

Screens
Windows

Semaphores
Semaphores

System Requirements
System Requirements

Tasknames
Commands

Tasks
Tasks

TCP/IP
AmiTCP

Tool Types
Options

Updates
Updates

Using Scout
Using Scout

VBR
Vectors

Vectors
Vectors

Vertical blank interrupt
Interrupts

Warranty

scout-39 39 / 39

Disclaimer

What is Scout?
Introduction

Windows
Windows

	scout-39
	scout-39.guide
	scout-39.guide/Introduction
	scout-39.guide/Copyright
	scout-39.guide/Disclaimer
	scout-39.guide/Giftware
	scout-39.guide/System Requirements
	scout-39.guide/MUI
	scout-39.guide/AmiTCP
	scout-39.guide/Installation
	scout-39.guide/Using Scout
	scout-39.guide/Assigns
	scout-39.guide/Devices
	scout-39.guide/Expansions
	scout-39.guide/Fonts
	scout-39.guide/InputHandlers
	scout-39.guide/Interrupts
	scout-39.guide/Libraries
	scout-39.guide/Locks
	scout-39.guide/Memory
	scout-39.guide/Mounted Devs
	scout-39.guide/Ports
	scout-39.guide/Resident Cmds
	scout-39.guide/Residents
	scout-39.guide/Resources
	scout-39.guide/Semaphores
	scout-39.guide/Tasks
	scout-39.guide/Vectors
	scout-39.guide/Windows
	scout-39.guide/Scout and AmiTCP
	scout-39.guide/Scout without MUI
	scout-39.guide/Options
	scout-39.guide/Commands
	scout-39.guide/Updates
	scout-39.guide/Credits
	scout-39.guide/Author Info
	scout-39.guide/Index

